Total Synthesis of (+)-Laurencin. Use of Acetal-Vinyl Sulfide Cyclizations for Forming Highly Functionalized Eight-Membered Cyclic Ethers

Matthias Bratz, ${ }^{\text {la }}$ William H. Bullock, ${ }^{\text {lb }}$ Larry E. Overman,* and Tadahiro Takemoto ${ }^{1 \mathrm{c}}$
Contribution from the Department of Chemistry, University of California, Irvine, California 92717-2025
Received October 19, 1994. Revised Manuscript Received January 30, 1995^{*}

Abstract

The enantioselective total synthesis of $(+)$-laurencin (1) is accomplished in 24 steps from allyl alcohol. The synthesis features an acetal-vinyl sulfide cyclization that forms the oxocene ring and introduces, with complete control, the Δ^{4} unsaturation and requisite functionality at carbons 3, 4, and 9. Starting with allyl alcohol, mixed acetal 17 is constructed in seven steps and 38% overall yield (Scheme 2). Exposure of 17 to excess $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in t-BuOMe at $-70 \rightarrow-40{ }^{\circ} \mathrm{C}$ affords Δ^{4}-oxocene 27 in $55-65 \%$ yield (Scheme 4). Removal of the phenylthio group, followed by elaboration of the $C(9)$ side chain and introduction of bromine at $C(4)$, completes the construction of $(+)$-laurencin (Schemes 4 and 5).

Red algae produce a breathtaking diversity of secondary metabolites. ${ }^{2}$ Distinctive members of this marine natural products group are the C_{15} acetogenins, many of which are halogen-containing cyclic ethers of diverse ring sizes. The prototypical member of the eight-membered cyclic ether subgroup is $(+)$-laurencin (1), which was first isolated from

(+)-laurencin (1)

methanol extracts of Laurencia glandulifera by Irie and Masamune in $1965 .^{3}$ On the basis of chemical degradation and spectroscopic studies, these researchers proposed that laurencin was a bromine-containing Δ^{4}-oxocene. Four years later this proposal was confirmed and the stereochemistry and absolute configuration of $(+)$-laurencin were fully defined by singlecrystal X-ray analysis. ${ }^{4}$

The pioneering synthetic investigations in this area were carried out also in Hokkaido and culminated in the Masamune group's total synthesis of (\pm)-laurencin in 1977.5 Recently, the

[^0]first enantioselective total syntheses of $(+)$-laurencin, starting in each case from (R)-malic acid, were accomplished in notably concise fashion by the Murai ${ }^{6}$ and Holmes ${ }^{7}$ groups.

The significant challenge in forming eight-membered cyclic ethers has stimulated the development of a number of imaginative syntheses of oxocanes and oxocenes. ${ }^{8}$ Not surprisingly, ring-expansion reactions have been a common theme in these developments, and were employed in the previous three syntheses of laurencin. ${ }^{5-7}$ Our own investigations in this area have focused on the challenging direct construction of medium ring ethers from acyclic precursors. ${ }^{9}$ In 1986 we first reported that Δ^{4}-oxocenes could be formed in preparatively useful yields by simple Prins cyclizations of 5 -(trimethylsilyl)-5-hexenyl acetals. ${ }^{9{ }^{9}}$ This approach was subsequently used by us to prepare (-)-laurenyne (2), which at the time constituted only the second total synthesis (and the first enantioselective total synthesis) of an oxocane natural product. ${ }^{10}$

During the latter stages of our exploratory investigations of Lewis acid-promoted cyclizations of 5-hexenyl acetals, we discovered that the yield of Δ^{4}-oxocene increased dramatically when the 5 -substituent was changed from $\mathrm{Me}_{3} \mathrm{Si}$ to PhS (eq 1). ${ }^{9 \mathrm{~b}}$ As a result, we wished to examine the applicability of

related acetal-vinyl sulfide cyclizations for preparing oxocene marine natural products. Laurencin was chosen as an appropriate benchmark target for these studies. Herein, we describe with

[^1]Scheme 1. Synthesis Plan

full experimental details these investigations which resulted in an expeditious total synthesis of $(+)$-laurencin.

Results and Discussion

Synthesis Plan. The strategy we pursued is outlined in Scheme 1. The key 4-(phenylthio)- Δ^{4}-oxocene intermediate 3 was envisaged to arise from Lewis acid-promoted cyclization of the mixed 5-(phenylthio)-5-hexenyl acetal 5. As suggested by our earlier exploratory investigations, ${ }^{9}$ intramolecular ene cyclization of an (E)-oxocarbenium ion intermediate in a topography represented by 4 would establish the required cis orientation of the $C(3)$ and $C(9)$ side chains and regioselectively introduce Δ^{4} unsaturation into the eight-membered cyclic ether product. In light of the difficulties encountered in our earlier attempts to employ α-functionalized oxocarbenium ions in cyclizations of 5 -(trimethylsilyl)-5-hexenyl acetals, ${ }^{10}$ we adopted the conservative strategy of introducing the $\mathrm{C}(9)$ side chain with a low level of functionalization in this first generation approach to $(+)$-laurencin. The mixed acetal 5 could be derived from vinyl sulfide 6 , which we envisaged arising from the monoprotected (R, R)-syn-1-hexene-3,4-diol 7.

Preparation of Mixed Acetal 17. Asymmetric allylboration of propanal with the allyldiisopinocampheylborane formed by sequential reaction of allyl ether 8 with $\sec -\mathrm{BuLi},(-)-B$ methoxydiisopinocampheylborane, and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was selected to prepare the syn-diol derivative 9 (Scheme 2). Using Brown's standard conditions, ${ }^{11}$ allylboration of propanal at $-78{ }^{\circ} \mathrm{C}$ formed 9 with high enantioselection (92% enantiomeric excess by HPLC analysis of the benzoate derivative using a Chiralcel OD column), albeit in low yield. We attributed the low yield of 9 to partial cleavage of the [2-(trimethylsilyl)ethoxy]methyl $(\mathrm{SEM})^{12}$ ether by $\mathrm{BF}_{3}{ }^{3} \mathrm{OEt}_{2}$ (or $\left.\mathrm{LiBF}_{4}\right)^{13}$ during the step in which the boronate complex is converted to the allylborane reagent. ${ }^{11}$ Omitting the $\mathrm{BF}_{3} \mathrm{OEE}_{2}$ treatment increased the yield of 9 , without compromising enantioselection. Careful optimization of this procedure allowed 9 to be obtained in 70% yield and 95% ee on a large scale. To our knowledge, this result is the

[^2]Scheme 2. Synthesis of Mixed Acetal 17

first instance in which the boronate complex formed from the addition of an (α-alkoxyallyl)lithium to B-methoxydiisopinocampheylborane is employed directly (i.e., without reaction with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$), with advantage, in the Brown asymmetric synthesis of syn-1,2-diols.
Conversion of 9 to the tert-butyldimethylsilyl (TBDMS) ether derivative 10 set the stage for Suzuki coupling ${ }^{14}$ with 1-bromo1 -(phenylthio)ethene (11). ${ }^{15}$ The critical conversion in the Suzuki sequence was found to be the initial hydroboration step, since 10 exhibited unexpectedly low reactivity with 9 -borabicyclo[3.3.1]nonane ($9-\mathrm{BBN}$). In small scale reactions, the use of ultrasound to accelerate the reaction of 10 with 1 equiv of 9-BBN was effective. ${ }^{16}$ However, on larger scales we found it preferable to simply employ $1.5-1.7$ equiv of 9 -BBN and carry out the hydroboration reaction in refluxing THF. After destroying excess $9-\mathrm{BBN}$ by the addition of 3 M NaOH , cross-coupling of the intermediate organoborane with 11 proceeded in excellent yield in a sealed tube at $110^{\circ} \mathrm{C}$ in the presence of $5 \mathrm{~mol} \%$ $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}$. Using this procedure, octenyl sulfide 12 was obtained in 70% (10 g scale) to 91% (1 g scale) yield.

Cleavage of the TBDMS protecting group of $\mathbf{1 2}$ provided the monoprotected diol 13. Reaction of 13 with 2 equiv of the α-bromo ether 14, which is readily available from 5 -penten-1ol as detailed in the Experimental Section, provided the mixed acetal 15 in 83% overall yield from 12. The SEM ether of this (bis)mixed acetal could be cleaved in good yield by reaction with CsF at high temperature in N, N-dimethylacetamide (DMAC) to provide alcohol 16. This notably selective conversion allowed us to modify the $\mathrm{C}(5)$ alcohol protecting group, an important adjustment since the nature of this functionality proved pivotal for the success of the central cyclization step (vide infra).

Careful attention to experimental detail was essential in effecting the sequence summarized in Scheme 2 efficiently. Paramount was preventing acid-catalyzed isomerization of the terminal vinyl sulfide unit to the more stable internal regioisomer. This isomerization was readily brought about by acid, e.g., the trace of DCl in CDCl_{3} or acid residues in untreated glassware. Base washing of all glassware ${ }^{17}$ and storing samples

[^3]Scheme 3. Cyclization Model Studies ($\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OPv}$)

containing the 1 -alkenyl- 2 -(phenylthio) group in frozen benzene were crucial to minimizing double bond isomerization.
Unfortunately, it did not prove possible to accomplish the Suzuki coupling step with alkene substrates that would obviate the need for the $C(6)$ silyl protecting group. Thus, although hydroboration of homoallylic alcohol 9 could be accomplished (established by oxidation to form the corresponding primary alcohol), the Suzuki coupling step failed completely with the derived organoborane intermediate. Attempted reaction of the mixed acetal 18 (readily prepared from 9 and 14) with 9-BBN at room temperature resulted in reduction of the acetal. Hydroboration of 18 could be executed at room temperature in the presence of $\mathrm{Rh}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{Cl} ;{ }^{18}$ however, the subsequent Pd catalyzed coupling step was apparently undermined by the presence of rhodium residues. The desired hydroboration of 18 and subsequent cross-coupling with 11 could be achieved in $38-54 \%$ yield using ultrasound to accelerate the initial hydroboration step (eq 2). ${ }^{16}$ However, we were never successful in further optimizing this more direct, though less efficient, synthesis of 15 .

Cyclization to form Oxocene 27. Prior to examining the cyclization of the mixed acetals 15 and 17 , we studied the intramolecular Prins reaction of the mixed acetal 20 which lacks oxidation at $\mathrm{C}(5)$ (Scheme 3). Low-temperature cyclization of 20 in t - BuOMe in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (the solvent and Lewis acid found optimal in our earlier studies $)^{9 \mathrm{~b}}$ provided oxocene 21 in an outstanding 87% yield when 2 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was employed. Use of a larger excess of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ dramatically lowered the cyclization efficiency. Minor products produced in this reaction were the tetrahydropyrans 22 resulting from Prins cyclization of the internal vinyl sulfide regioisomer of 20 and the alcohol vinyl sulfides 23. These latter products undoubtedly result from cleavage of the mixed acetal 20 in the

[^4]Scheme 4. Cyclization of Oxocene 27 and Elaboration to 32

undesired sense to form the methoxyoxocarbenium ion (vide infra). Since BCl_{3} had proven effective in activating OMe to achieve selective oxocarbenium ion formation in a demanding acetal-vinylsilane cyclization, ${ }^{19}$ the related Lewis acid $\mathrm{Me}_{2}{ }^{-}$ BBr was examined also. However, $\mathrm{Me}_{2} \mathrm{BBr}$ treatment of the vinyl sulfide mixed acetal 20 afforded a complex mixture of products from which only a trace of oxocene 21 and the tetrahydropyran vinyl sulfide 24 could be isolated.

We turned next to the cyclization of vinyl sulfide acetal 15 (eq 3). Not surprisingly, treatment of 15 with $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ under a variety of conditions led to the formation of dioxolane $\mathbf{2 6}$,

which showed diagnostic signals for the $\mathrm{C}(2)$ methine hydrogen at δ 5.0. Dioxolane 26 would arise from capture of the oxocarbenium ion intermediate by the proximal oxygen of the SEM ether (or from direct participation of this group in acetal cleavage) to form 25.

The nucleophilic character of the $C(5)$ oxygen clearly had to be moderated, and employing an electron-withdrawing protecting group was an obvious solution. Therefore, we examined analogs of 15 in which the alcohol protecting group was Ts, COCF_{3}, or Ac , and the acetate group proved optimal. Cyclization of acetate 17 in t-BuOMe at $-78 \rightarrow-40^{\circ} \mathrm{C}$ in the presence of 3 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ afforded the cis-2,8-disubstituted oxocene 27 as the major product (Scheme 4). Yields for this conversion ranged from 55% to 65%, with a 57% yield being realized in a 5 g scale cyclization. Analysis of the crude cyclization product by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data confirmed that 27 was formed as a single regio- and stereoisomer.
Four additional products were isolated from large scale cyclizations of 17: tetrahydropyran 33 (7%), the internal vinyl sulfide acetals $34(\sim 18 \%)$ and two polar products ($\sim 14 \%$), the
(19) Berger, D.; Overman, L. E.; Renhowe, P. A. J. Am. Chem. Soc. 1993, $115,9305$.

Figure 1. Alternate modes of cleavage of mixed acetal 17.
hydroxy vinyl sulfide acetates $\mathbf{3 5}$ and 36 . We assume that the acetate precursor of 34 was cleaved during workup and that 36 arose by acetyl migration.

The isolation of these byproducts provides some insight into the origin of the lower yield of oxocene realized in the $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}-$ promoted cyclization of mixed acetal 17 than in the cyclization of the simpler acetal 20. Notably, in cyclizations of this latter mixed acetal that lacks the proximal acetate substituent, no polar byproducts corresponding to 35 and 36 were seen by TLC analysis of the crude cyclization product. Apparently, electron withdrawal by the acetate group of 17 destabilizes oxocarbenium ion 37 sufficiently that acetal cleavage in the undesired sense to form 38 and 39 (and ultimately 35 and 36) is a competing process (Figure 1). This destabilization of 37 by the neighboring acetate group could also decrease the rate of oxocene formation and, thus, be responsible for the larger degree of double bond isomerization seen in the cyclization of 17 (leading to the isolation of 33 and 34).

Completion of the Total Synthesis of (+)-Laurencin. Desulfurization of oxocene 27 took place cleanly with Raney nickel to deliver 28 (Scheme 4). The conversion of 28 to (+)laurencin requires development of the six-carbon $C(9)$ side chain and the introduction of bromine with inversion at $C(4)$. To set the stage for the former functionalization, the hydroxy protecting group at C(4) was first changed to TBDMS and the pivaloyl group of 29 was cleaved to form the primary alcohol 30. Oxidation of $\mathbf{3 0}$ to aldehyde $\mathbf{3 1}$ was followed by Saegusa-Ito oxidation ${ }^{20}$ to provide the (E)-enal 31 (none of the Z stereoisomer was seen in the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the crude
(20) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011.

Flgure 2. ${ }^{1} \mathrm{H}$ NMR NOE enhancements of oxocene $29\left[\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3}\right.$ OPv].

Scheme 5. Conversion of $\mathbf{3 2}$ to (+)-Laurencin

oxidation product). Reduction of 31 with DIBAL-H then provided 32. Although requiring seven steps, the conversion of $\mathbf{2 8} \boldsymbol{\rightarrow 3 2}$ could be accomplished in a quite satisfactory overall yield of 59%.

At the stage of 29 the stereochemistry of the Δ^{4}-oxocene could be confirmed by the ${ }^{1} \mathrm{H}$ NOE enhancements summarized in Figure 2. The boat-chair (BC-2) conformation depicted for 29 in Figure 2 is the one found for laurencin by single-crystal X-ray analysis. ${ }^{4}$

Several approaches were then explored for introducing the (E)-enyne and (R)-acetate functionalities of the $\mathrm{C}(9)$ side chain. The ultimately successful strategy is summarized in Scheme 5. Sharpless epoxidation of $\mathbf{3 2}$ using the reagent derived from (+)diethyl tartrate provided a single epoxy alcohol, 40. ${ }^{21}$ The high selectivity of this conversion (no stereoisomer was detectable in the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the crude oxidation product) is attributable to matching of substrate, and reagentcontrolled diastereoselection. ${ }^{21}$ Oxidation of 40 to epoxy aldehyde 41 was most efficiently accomplished with the DessMartin periodinane. ${ }^{22}$ Subsequent Wittig condensation of 41

[^5]with the ylide derived from phosphonium salt 42^{23} provided enyne $\mathbf{4 3}$ in 89% yield as a $3: 1$ mixture of E and Z stereoisomers. Stereoselection in this step was of no consequence, since both double bond isomers were converted to 44 with similar stereoselectivity ($E: Z=4: 1$) in nearly quantitative yield upon palladium-catalyzed hydrogenolysis. ${ }^{24}$ At this point, the (E)and (Z)-enyne stereoisomers were separated on silica gel and the E isomer 44 was taken on to (+)-laurencin. ${ }^{25}$

Acetylation of 44 followed by cleavage of the TBDMS group at room temperature with 80% aqueous acetic acid provided 45. Conversion of this intermediate to $(+)$-laurencin was achieved by treatment with the bromophosphonium salt prepared from bis(diphenylphosphino)ethane and Br_{2}, followed by cleavage of the triisopropylsilyl group with tetrabutylammonium fluoride (TBAF). Although trioctylphosphine- $\mathrm{CBr}_{4}{ }^{6}$ and 1,2bis(diphenylphosphino)ethane $-\mathrm{Br}_{2}{ }^{7}$ have been reported to convert the trimethylsilyl analog of $\mathbf{4 5}$ to the trimethylsilyl derivative of $(+)$-laurencin in high yield, bromination of the triisopropylsilyl (TIPS) derivative 45 with either reagent was inefficient, resulting in a modest 40% overall yield for the conversion of $\mathbf{4 5} \rightarrow(+)-1$. Synthetic 1 showed ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra indistinguishable from those of natural and synthetic (+)-laurencin. Moreover, the optical rotation of synthetic 1 was nearly identical to that reported for the natural sample: synthetic $(+)-\mathbf{1},[\alpha]^{24} \mathrm{D}+68.2^{\circ}\left(c 0.35, \mathrm{CHCl}_{3}\right)$; natural $(+)$-laurencin, $[\alpha]^{24} \mathrm{D}+70.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Conclusion

In summary, $(+$)-laurencin was prepared in 24 steps and $\sim 2 \%$ overall yield from allyl alcohol as summarized in Schemes 2, 4 , and 5 . Our synthesis of this benchmark oxocene natural product is the first to employ a cyclization reaction to directly form the eight-membered cyclic ether. The efficiency of the central acetal-vinyl sulfide cyclization step $(\mathbf{1 7} \rightarrow \mathbf{2 7})$ highlights the advantage of employing vinyl sulfide (vis-à-vis vinylsilane) nucleophiles in Prins cyclization reactions to form medium ring ethers.

Experimental Section

Reactions with substrates containing a vinyl sulfide unit were performed in base-washed glassware, ${ }^{17}$ and intermediates containing a terminal vinyl sulfide unit were stored in frozen benzene. Unless noted otherwise, new compounds were nearly colorless oils. Other general experimental details were recently described. ${ }^{26}$

3-[[2-(Trimethylsilyl)ethoxy]methoxy]-1-propene (8). To a solution of allyl alcohol ($62 \mathrm{~g}, 1.1 \mathrm{~mol}$), $i-\mathrm{Pr}_{2} \mathrm{EtN}(53 \mathrm{~mL}, 0.30 \mathrm{~mol})$, and 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added [2-(trimethylsilyl)ethoxy]methyl chloride ($30.0 \mathrm{~g}, 0.18 \mathrm{~mol}$) dropwise over 30 min while the internal temperature was maintained below $0^{\circ} \mathrm{C}$ using an ice-salt bath. After the addition was complete, the reaction solution was cooled in an ice-salt bath for 1 h , maintained at room temperature (rt) for 24 h , and then concentrated. The resulting residue was diluted with 200 mL of pentane and then washed with water (100 mL), $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and brine (100 mL). The organic layer was dried (MgSO_{4}) and concentrated, and the residue was purified by distillation to afford the corresponding SEM ether $8(27.0 \mathrm{~g}, 80 \%)$: bp $63-65^{\circ} \mathrm{C}$ $(10 \mathrm{mmHg}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92$ (ddd, $J=17.2,10.4$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dq}, J=10.3,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{dt}, J=5.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H})$, $0.94(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.4,116.9$, $94.0,68.2,65.1,18.1,-1.5$.

[^6](3R,4R)-4-[[2-(Trimethylsilyl)ethoxy]methoxy]-5-hexen-3-ol (9). A modification of the general procedure of Brown was employed. ${ }^{11}$ To a cooled solution of ether $8(10.3 \mathrm{~g}, 54.7 \mathrm{mmol})$ and 110 mL of THF was added sec-BuLi (49.7 mL of 1.1 M solution in cyclohexane, 54.7 mmol) over 30 min while the internal temperature was maintained below $-73^{\circ} \mathrm{C}$. The resulting yellow solution was maintained for 20 \min at $-78^{\circ} \mathrm{C}$, and then $(-)-B$-methoxydiisopinocampheylborane (54.7 mL of a 1.0 M solution in THF) was added dropwise over 30 min while the internal temperature was maintained below $-75^{\circ} \mathrm{C}$. The resulting colorless solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and then cooled to $-100^{\circ} \mathrm{C}$. Propanal ($9.5 \mathrm{~g}, 160 \mathrm{mmol}$) was then added dropwise while the internal temperature was maintained below -97 ${ }^{\circ} \mathrm{C}$. The reaction was stirred for 3 h at $-97^{\circ} \mathrm{C}$ and then allowed to slowly warm to rt. The resulting colorless solution was concentrated, and the residue was dissolved in 200 mL of ether. To this solution was added 30% hydrogen peroxide (40 mL) and 8 pellets of NaOH under ice-cooling. The resulting mixture was stirred overnight at rt , and the ether layer was separated. The aqueous layer was extracted with ether ($2 \times 100 \mathrm{~mL}$), and the combined organic layers were washed with water $(100 \mathrm{~mL})$ and brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Isopinocampheol was removed from the crude product by fractionational distillation using a short-path distillation apparatus ($64-66^{\circ} \mathrm{C}, 0.5 \mathrm{mmHg}$), and the residue was submitted to bulb-tobulb distillation to afford $9(9.4 \mathrm{~g}, 70 \%)$: bp $130-140^{\circ} \mathrm{C}(0.5 \mathrm{mmHg})$; $[\alpha]^{25}{ }_{\mathrm{D}}-88.2^{\circ},[\alpha]^{25}{ }_{577}-91.9^{\circ}[\alpha]^{25}{ }_{546}-104^{\circ},[\alpha]^{25}{ }_{435}-173^{\circ},[\alpha]^{25}{ }_{405}$ -205° (c 3.4, benzene); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.67$ (ddd, $J=$ $17.6,9.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dt}, J=9.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dt}, J=9.7,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.55$ (ddd, $J=14.5,7.4,3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.39(\mathrm{dt}, J=14.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.92(\mathrm{~m}, 2 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.0,119.6$, $92.3,81.0,74.6,65.5,25.5,18.0,9.8,-1.5$; IR (film) $3482,2925,1406$, $1192,1135 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 247.1704$ (247.1729 calcd for $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}, \mathrm{MH}$). Anal. Caled for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}$: C. $58.49 ; \mathrm{H}, 10,63$. Found: C, 58.58; H, 10.59.

The enantiomeric excess of 9 was determined by chiral HPLC analysis of the corresponding benzoate derivative. To a solution of 9 ($30 \mathrm{mg}, 0.12 \mathrm{mmol}$) and pyridine (1 mL) was added benzoyl chloride $(17 \mathrm{mg}, 0.12 \mathrm{mmol}$) under ice-cooling. The reaction was stirred under ice-cooling for 1 h and then at rt for 24 h . The reaction then was poured into ice-water and extracted with ether ($3 \times 5 \mathrm{~mL}$). The combined organic layer was washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by flash column chromatography ($10: 1$ hexane -EtOAc) to give the benzoate derivative (30 mg). HPLC analysis (Chiralcel OD, hexane, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$) showed an enantiomeric purity of $>95 \%: t_{\mathrm{R}}(R, R$ enantiomer $)=38 \mathrm{~min}, t_{\mathrm{R}}-$ $(S, S$ enantiomer $)=29.7 \mathrm{~min}$.
($3 R, 4 R$)-4-(tert-Butyldimethylsiloxy)-3-[[2-(trimethylsilyl)ethoxy]-methoxy]-1-hexene (10). To a solution of $9(6.60 \mathrm{~g}, 26.8 \mathrm{mmol}), 2,6-$ lutidine ($9.3 \mathrm{~mL}, 80 \mathrm{mmol}$), and 80 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added tertbutyldimethylsilyl trifluoromethanesulfonate ($10.6 \mathrm{~g}, 40.1 \mathrm{mmol}$) dropwise over 5 min at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then at rt for 2 h . The reaction then was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) and washed with saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by short-path distillation to afford $10(9.3 \mathrm{~g}, 96 \%)$: bp $129-130^{\circ} \mathrm{C}$ $(1.2 \mathrm{mmHg}) ;[\alpha]^{25} \mathrm{D}-12.6^{\circ},[\alpha]^{25_{577}}-13.5^{\circ},[\alpha]^{25_{546}}-15.2^{\circ},[\alpha]^{25}{ }_{435}$ $-21.0^{\circ},[\alpha]^{25}{ }_{405}-25.3$ (c 1.5, benzene); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78$ (ddd, $J=17.4,10.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H})$, $4.69(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{dt}, J=9.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dt}, J=7.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52(\mathrm{dt}, J=7.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{ddd}, J=14.4,7.4,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.35(\mathrm{dt}, J=14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.87-0.94(\mathrm{~m}, 5 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07$ ($\mathrm{s}, 3 \mathrm{H}$), $0.06(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.1$, 117.7, 92.9, 79.6, 75.6, 65.1, 25.9, 25.2, 18.2, 18.1, 10.0, -1.4, -4.3, .4.7: IR (film) 2957, 2931, 2885, 2859, $1251 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 345.2281$ (345.2278 calcd for $\mathrm{C}_{17} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}_{2}, \mathrm{M}-\mathrm{Me}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}_{2}: \mathrm{C}, 59.94 ; \mathrm{H}, 11.17$. Found: C, 60.06 ; H, 11.20.
(5R,6R)-6-(tert-Butyldimethylsiloxy)-2-(phenylthio)-5-[[2-(trim-ethylsilyl)ethoxy]methoxy]-1-octene (12). A THF solution of 9-BBN
($0.5 \mathrm{M}, 12.8 \mathrm{~mL}, 6.43 \mathrm{mmol}$) was added dropwise to neat $10(1.16 \mathrm{~g}$, 3.21 mmol) at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at rt for 30 min and then gently heated at reflux for 3 h . The reaction was then cooled in an ice bath and excess $9-\mathrm{BBN}$ was destroyed by the slow addition of $3 \mathrm{M} \mathrm{NaOH}(4.3 \mathrm{~mL}, 13 \mathrm{mmol}$; Caution!). After stirring for 30 min at rt , the resulting mixture was transferred into a heavy wall tube, and solutions of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(185 \mathrm{mg}, 5 \mathrm{~mol} \%)$ in benzene $(3 \mathrm{~mL})$ and bromide $11^{15}(1.00 \mathrm{~g}, 4.80 \mathrm{mmol})$ in benzene (3 mL) were added. After deoxygenation of the solution with nitrogen, the tube was sealed and heated at $110^{\circ} \mathrm{C}$ for 3 h with rapid magnetic stirring. The resulting brown mixture was cooled to rt and poured into $1: 1$ hexane-water (20 mL). The organic layer was separated, the aqueous layer was extracted with hexane $(3 \times 10 \mathrm{~mL})$, and the combined organic layer was washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. This residue was purified by flash chromatography ($20: 1$ hexane- EtOAc) to afford $12(1.46 \mathrm{~g}, 91 \%)$ as a colorless oil: $[\alpha]^{25}{ }_{D}+0.83^{\circ},[\alpha]^{25}{ }_{577}-0.36^{\circ},[\alpha]^{25}{ }_{546}-1.77^{\circ},[\alpha]^{25}{ }_{435}-5.84^{\circ},[\alpha]^{25}{ }_{405}$ -9.77° (c 1.2, benzene); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.44-7.47(\mathrm{~m}$, $2 \mathrm{H}), 6.94-7.03(\mathrm{~m}, 3 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (ddd, $J=10.5,9.4,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.52-3.73$ (m, 3H), 2.63 (ddd, $J=14.6,9.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (ddd, $J=14.6,8.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.87(\mathrm{~m}$, $2 \mathrm{H}), 1.38-1.51(\mathrm{~m}, 1 \mathrm{H}), 0.93-1.03(\mathrm{~m}, 14 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}$, $3 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 146.7,133.7,133.6$, $129.4,127.9,112.8,95.9,81.3,75.4,65.4,33.7,28.7,26.1,24.4,18.4$, $11.2,-1.3,-4.0,-4.4$; IR (film) 2896, 2885, 1608, 1440, 1378, 1137 , $919 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 539.3378$ (539.3410 calcd for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{O}_{3} \mathrm{SSi}_{2}, \mathrm{M}+\mathrm{C}_{3} \mathrm{H}_{7}$). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Si}_{2}$: C, 62.84; H, 9.74. Found: C, 62.74; H, 9.71.
(3R,4R)-7-(Phenylthio)-4-[[2-(trimethylsilyl)ethoxy]methoxy]-7-octen-3-ol (13). A solution of $12(392 \mathrm{mg}, 0.79 \mathrm{mmol})$, TBAF (1.6 mL of 1.0 M solution in THF) and 5 mL of THF was maintained at rt for 18 h . The reaction then was poured into water (5 mL) and extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$), and the combined organic layer was washed with water (5 mL), brine (5 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by flash chromatography ($10: 1$ hexane-EtOAc) to afford alcohol $13(271 \mathrm{mg}, 90 \%)$: $[\alpha]^{25} \mathrm{D}-30.0^{\circ}$, $[\alpha]^{25}{ }_{577}-50.7^{\circ},[\alpha]^{25}{ }_{546}-49.9^{\circ},[\alpha]^{25}{ }_{435}-69.2^{\circ},[\alpha]^{25}{ }_{405}-76.6^{\circ}(c 0.46$, benzene) ; 'H NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.42-7.45(\mathrm{~m}, 2 \mathrm{H}), 6.94-$ $7.02(\mathrm{~m}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dt}, J=9.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dt}, J=$ $9.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ $(\mathrm{m}, 2 \mathrm{H}),-0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 146.4,133.7$, $133.5,129.4,128.5,112.8,95.9,83.5,74.3,65.8,32.7,30.4,26.3,18.2$, $10.2,-1.4$; IR (film) $3448,2995,2936,1608,1249,1025,860 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $m / z 425.2548$ (425.2546 calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{O}_{3}$. $\mathrm{SSi}, \mathrm{M}+\mathrm{C}_{3} \mathrm{H}_{7}$). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SSi}$: $\mathrm{C}, 62.78 ; \mathrm{H}, 8.95$. Found: C, 62.75; H, 8.98.

4,4-Dimethoxybutyl 2,2-Dimethylpropanoate. To a solution of l-penten- $5-\mathrm{ol}(20 \mathrm{~g}, 0.23 \mathrm{~mol})$ and 200 mL of pyridine was added trimethylacetyl chloride ($30 \mathrm{~mL}, 0.24 \mathrm{~mol}$) dropwise under ice-cooling over 30 min . The reaction then was allowed to warm to rt with stirring over 2 h . After 2 d , the reaction was poured into ice-water (300 mL) and extracted with ether $(3 \times 200 \mathrm{~mL})$. The combined organic layer was washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 300 \mathrm{~mL})$, water $(300 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$, and brine $(300 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by distillation to afford 4-pentenyl 2,2 -dimethylpropanoate ($31 \mathrm{~g}, 79 \%$): bp $78-79^{\circ} \mathrm{C}(30$ mmHg); HRMS (CI, isobutane) $m / z 171.1397$ (171.1385 calcd for $\left.\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}, \mathrm{MH}\right)$.

A portion of this sample $(12.6 \mathrm{~g}, 73.1 \mathrm{mmol})$ was dissolved in 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $-78^{\circ} \mathrm{C}$. Ozone was added until the solution turned blue, and then excess ozone was removed by sparging with oxygen. Triphenylphosphine $(28.7 \mathrm{~g}, 109 \mathrm{mmol})$ then was added portionwise at $-78{ }^{\circ} \mathrm{C}$, and the reaction was allowed to warm to rt overnight. After concentration, 200 mL of pentane was added and the resulting solution was cooled in an ice bath to precipitate triphenylphosphine oxide. The concentrated filtrate was purified by distillation to afford 4-oxobutyl 2,2-dimethylpropanoate ($10.4 \mathrm{~g}, 83 \%$): bp 99-100 ${ }^{\circ} \mathrm{C}(45 \mathrm{mmHg}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79(\mathrm{t}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{dt}, J=7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{dt}$, $J=14.6,6.5 \mathrm{~Hz}), 1.17(\mathrm{~s}, 9 \mathrm{H})$.

A solution of a portion of this aldehyde ($8.7 \mathrm{~g}, 51 \mathrm{mmol}$), trimethyl orthoformate ($100 \mathrm{~mL}, 0.94 \mathrm{~mol}$), pyridinium p-toluenesulfonate (2.5 $\mathrm{g}, 10 \mathrm{mmol})$, and methanol (400 mL) was maintained for 24 h at rt and then concentrated. This residue was dissolved in 100 mL of ether and washed with saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The resulting residue was purified by distillation to afford 4,4-dimethoxybutyl 2,2-dimethylpropanoate ($10.1 \mathrm{~g}, 92 \%$): bp $105-106^{\circ} \mathrm{C}(35 \mathrm{mmHg}) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.37(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 6 \mathrm{H})$, $1.66(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.5,104.0$, 64.0, 52.7, 38.7, 28.9, 27.1, 23.8; IR (film) 2919, 2910, 2833, 1729, $1481,1464,1285,1070,666 \mathrm{~cm}^{-1}$; MS (CI, isobutane) $m / z 187.1339$ (187.1334 calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{3}, \mathrm{MH}-\mathrm{MeOH}$).

4-Bromo-4-methoxybutyl 2,2-Dimethylpropanoate (14). To a solution of 4,4 -dimethoxybutyl 2,2 -dimethylpropanoate $(9.0 \mathrm{~g}, 41$ mmol) and 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was a $2 \mathrm{M} \mathrm{CH} \mathrm{Cl}_{2}$ solution of bromodimethylborane ($20.6 \mathrm{~mL}, 41 \mathrm{mmol}$) dropwise over 15 min at $-78^{\circ} \mathrm{C}$. The reaction was maintained at $-78^{\circ} \mathrm{C}$ for 2 h and then allowed to warm to rt . This solution was concentrated under high vacuum (1 h at 0.5 mmHg), and crude $14(10.8 \mathrm{~g}, 98 \%)$ was used directly without further purification: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.88(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.17-$ $2.24(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 178.3,98.5,63.1,59.1,37.2,26.9,24.9,21.2$.
(5R,6R)-6-[1-Methoxy-4-(pivaloyloxy)butoxy]-2-(phenylthio)-5-[[2-(trimethylsilyl)ethoxy]methoxy]-1-octene (15). To a solution of alcohol $13(6.1 \mathrm{~g}, 15.9 \mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{EtN}(14 \mathrm{~mL}, 80 \mathrm{mmol})$, and 70 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of bromo acetal $14(8.5 \mathrm{~g}, 32$ mmol) and 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise over 30 min with ice-salt bath cooling. The resulting solution was maintained at $0^{\circ} \mathrm{C}$ for 1 h and then allowed to warm to rt over 1 h . After 2.5 h at rt , the reaction solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The resulting residue was purified by flash chromatography ($10: 1$ hexane-EtOAc) to afford $15(8.8 \mathrm{~g}, 97 \%)$ as a $1: 1$ mixture of the diastereomer: $[\alpha]^{25} \mathrm{D}+3.4^{\circ}$, $[\alpha]^{25}{ }_{577}+3.0^{\circ},[\alpha]^{25}{ }_{546}+3.3^{\circ},[\alpha]^{25}{ }_{435}+3.5^{\circ},[\alpha]^{25}{ }_{405}+2.6^{\circ}(c 4.0$, benzene) ; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.44-7.47$ (m, 2H), 6.94$7.03(\mathrm{~m}, 3 \mathrm{H}), 5.22$ and $5.21(\mathrm{~s}, 1 \mathrm{H}$ total), $5.01(\mathrm{~s}, 1 \mathrm{H}), 4.68$ and 4.67 $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$ total), 4.64 and $4.62(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$ total), 4.56 and $4.43(\mathrm{~m}, 1 \mathrm{H}$ total), $4.01(\mathrm{~m}, 2 \mathrm{H}), 3.87$ and $3.77(\mathrm{~m}, 1 \mathrm{H}$ total), $3.58-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.15$ and $3.14(\mathrm{~s}, 3 \mathrm{H}$ total), 2.44-2.65 (m, 2 H$)$, 2.06-2.30 (m, 1H), 1.68-1.88 (m, 1H), 1.61-1.64 (m, 4H), $1.47(\mathrm{~m}$, $1 \mathrm{H}), 1.16$ and $1.15(\mathrm{~s}, 9 \mathrm{H}$ total), 1.09 and $0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$ total), 0.93-0.99 (m, 2H), $0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 177.6, 146.7, 146.6, 133.6, 129.4, 129.3, 112.8, 112.7, 104.5, 102.8, $95.7,80.8,79.6,78.8,78.6,65.4,64.2,64.1,52.1,52.0,38.7,33.7$, $33.5,30.2,29.2,27.3,24.2,22.9,22.4,18.3,11.1,10.9,-1.8$, IR (film) $2958,2935,2909,2902,1728,1609,1479,1284,1158,1026 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $m / z 611.3780\left(611.3800\right.$ calcd for $\mathrm{C}_{33} \mathrm{H}_{59} \mathrm{O}_{6}$. SSi, $\mathrm{M}+\mathrm{C}_{3} \mathrm{H}_{7}$). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{SSi}$: C, 63.34; H, 9.21 . Found: C, 63.38; H, 9.15 .
(3R,4R)-3-[1-Methoxy-4-(pivaloyloxy)butoxy]-7-octen-4-ol (16). A mixture of CsF ($700 \mathrm{mg}, 4.6 \mathrm{mmol}$), the mixed acetal 15 (264 mg , 0.46 mmol), and 8 mL of N, N-dimethylacetamide (DMAC) was heated at $150^{\circ} \mathrm{C}$. After 5 h , the reaction was allowed to cool to rt and then poured into saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$, and the combined organic layer was washed with water (5 mL) and brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The resulting residue was purified by flash chromatography ($3: 1$ hexane-EtOAc) to afford $\mathbf{1 6}(171 \mathrm{mg}, 84 \%)$ as a $1: 1$ mixture of stereoisomers: $[\alpha]^{25}{ }_{D}-8.3^{\circ},[\alpha]^{25}{ }_{577}-11.1^{\circ},[\alpha]^{25}{ }_{546}-13.6^{\circ},[\alpha]^{25}{ }_{435}$ $-26.2^{\circ},[\alpha]^{25}{ }_{405}-36.0^{\circ}$ (c 0.99 , benzene) $;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}), 6.95-7.01(\mathrm{~m}, 3 \mathrm{H}), 5.23$ and $5.20(\mathrm{~s}, 1 \mathrm{H}$ total), 5.04 and $5.03(\mathrm{~s}, 1 \mathrm{H}$ total), 4.40 and $4.17(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$ total), $3.96-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.14-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.06$ and $2.97(\mathrm{~s}, 3 \mathrm{H}$ total), $2.57-2.78(\mathrm{~m}, 2 \mathrm{H})$, 2.50 (ddd, $J=11.9,7.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.21-1.96(\mathrm{~m}, 7 \mathrm{H}), 1.15(\mathrm{~s}$, 9 H), 0.92 and $0.80\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$ total); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 177.7,146.4,146.3,129.4,129.3,128.5,127.8,113.3,104.4,103.9$, $84.3,81.8,71.4,71.2,53.1,52.3,38.7,33.3,33.0,32.5,30.0,27.3$, $24.2,24.0,23.8,9.7,9.4$; IR (film) $3484,2955,2934,1727,1608,1479$, $1160 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 407.2257$ (407.2255 calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{~S}, \mathrm{MH}-\mathrm{MeOH}$).
(5R,6R)-5-Acetoxy-6-[1-methoxy-4-(pivaloyloxy)butoxy]-2-(phe-nylthio)-1-octene (17). To a solution of alcohol $16(4.9 \mathrm{~g}, 11 \mathrm{mmol})$ and 60 mL of pyridine was added acetic anhydride ($10 \mathrm{~mL}, 110 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$, and the resulting solution was maintained at rt for 24 h . The reaction was then poured into cold saturated aqueous $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 150 \mathrm{~mL}$). The combined organic layer was washed with saturated aqueous NaHCO_{3} (200 mL), water $(200 \mathrm{~mL})$, and brine (200 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The resulting residue was purified by flash chromatography ($3: 1$ hexane-EtOAc) to afford acetate $17(5.1 \mathrm{~g}, 95 \%$) as a $1: 1$ mixture of stereoisomers: $[\alpha]^{25} \mathrm{D}-0.84^{\circ},[\alpha]^{25}{ }_{577}-2.70^{\circ},[\alpha]^{25}{ }_{546}$ $-2.90^{\circ},[\alpha]^{25}{ }_{435}-10.9^{\circ},[\alpha]^{25}{ }_{405}-16.4^{\circ}$ (c 0.97 , benzene); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-7.04(\mathrm{~m}, 3 \mathrm{H})$, 5.27 and 5.11 (dt, $J=9.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}$ total), 5.14 and $5.13(\mathrm{~s}, 1 \mathrm{H}$ total), 5.02 and 5.01 (s, 1 H total), 4.55 and $4.37(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}$ total), $3.98(\mathrm{~m}, 2 \mathrm{H}), 3.59$ and $3.49(\mathrm{dt}, J=6.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}$ total), 3.14 and 3.12 ($\mathrm{s}, 3 \mathrm{H}$ total), 2.33 (ddd, $J=15.2,13.0,7.9,2 \mathrm{H}$), 1.42-2.25 $(\mathrm{m}, 8 \mathrm{H}), 1.66$ and $1.64(\mathrm{~s}, 3 \mathrm{H}$ total), $1.14(\mathrm{~s}, 9 \mathrm{H}), 0.96$ and $0.84(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}$ total); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 177.6,169.8,145.7$, $145.5,133.5,131.5,129.4,129.3,113.7,113.5,103.7,103.6,78.5$, $78.1,73.5,73.2,64.1,64.0,52.5,38.7,33.1,33.0,30.2,30.1,28.7$, $28.3,27.2,24.1,24.0,23.5,22.8,20.5,10.3,10.2$. IR (film) 2988, 2938, 1739, 1731, 1479, 1238, 1150, $1035 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) m / z 449.2408 (449.2361 calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{~S}$, MH - MeOH).
cis-8-Methyl-4-(phenylthio)-2-[3-(pivaloyloxy)propyl]-3,6,7,8-tet-rahydro- 2 H -oxocin (21). To a solution of $20(262 \mathrm{mg}, 0.64 \mathrm{mmol})$ and $t-\mathrm{BuOMe}(13 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.16 \mathrm{~mL}, 1.3 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$. After 2 h at $-78^{\circ} \mathrm{C}$, the reaction was slowly warmed to $-50^{\circ} \mathrm{C}$ and was maintained between -30 and $-50^{\circ} \mathrm{C}$ for an additional 5 h . The reaction was then quenched by adding 1 M $\mathrm{NaOH}(5 \mathrm{~mL})$ and allowed to warm to rt . The resulting mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), and the organic layer was washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by flash chromatography ($10: 1$ hexane-EtOAc) to give oxocene 21 ($209 \mathrm{mg}, 87 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.34$ (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-7.05(\mathrm{~m}, 3 \mathrm{H}), 5.97(\mathrm{dd}, J=10.3,6.9, \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.00-$ $1.73(\mathrm{~m}, 6 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 177.6,135.7,134.2,133.8,131.0,129.3,126.9,80.3$, $74.9,64.3,41.2,38.7,38.3,33.4,27.3,25.9,25.7,22.0$. IR (film) 2973, 2933, 2849, 1728, 1583, 1383, $1041 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) m / z 377.2144 (377.2148 calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{~S}, \mathrm{MH}$).

In a similar reaction on a smaller scale (21 mg), the crude product (18 mg) was found by ${ }^{1} \mathrm{H}$ NMR analysis to be a $21: 1$ mixture of $\mathbf{2 1}$ and tetrahyropyran 22. Separation on silica gel (10:1 hexane-EtOAc) provided a pure specimen of tetrahydropyran 22: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.45(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~m}, 3 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.16$ $(\mathrm{dt}, J=6.4,1.8, \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H})$, $1.23-2.06(\mathrm{~m}, 8 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H})$; IR (film) 2921, 2914, 1728, 1663, 1536, 1450, $1324 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 377.2167$ (377.2148 calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{~S}, \mathrm{MH}$).

Tetrahydropyran 24 was also isolated as a mixture of stereoisomers from cyclizations of $\mathbf{2 0}$ carried out with $\mathrm{Me}_{2} \mathrm{BBr}$: ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.44(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~m}, 3 \mathrm{H}), 3.93-4.02(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.60$ $(\mathrm{m}, 1 \mathrm{H}), 2.18-2.42(\mathrm{~m}, 1 \mathrm{H}, 2 \mathrm{H}), 1.20-1.84(\mathrm{~m}, 6 \mathrm{H}), 1.42$ and 1.50 ($\mathrm{s}, 3 \mathrm{H}$ total), 1.15 and 1.17 ($\mathrm{s}, 9 \mathrm{H}$ total), 1.05 and 1.03 (d, $J=6.1 \mathrm{~Hz}$, 3H total); IR (film) 2977, 2932, 1729, 1663, 1480, 1380, $1269 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) m/z 377.2153 (377.2148 calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{~S}$, MH).
$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$-Promoted Cyclization of Mixed Acetal 17. Formation of ($2 R, 3 R, 8 R$)-3-Acetoxy-2-ethyl-6-(phenylthio)-8-[3-(plvaloyloxy)-propyl]-3,4,7,8-tetrahydro-2 H -oxocin (27). To a solution of 17 (5.1 $\mathrm{g}, 10.6 \mathrm{mmol}$) and 210 mL of t-BuOMe was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(3.9 \mathrm{~mL}$, 32 mmol) dropwise over 10 min at $-78^{\circ} \mathrm{C}$. After 0.5 h at $-78^{\circ} \mathrm{C}$, the resulting solution was warmed to $0{ }^{\circ} \mathrm{C}$ by changing the cooling bath to an ice bath and then poured into saturated aqueous NaHCO_{3} (200 mL) and carefully shaken. The organic layer was separated and washed with brine (200 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by flash chromatography ($5: 1$ hexane-EtOAc, two times) to give $2.75 \mathrm{~g}(57 \%)$ of pure oxocene 27: $[\alpha]^{24} \mathrm{D}-152^{\circ}$. $[\alpha]^{24} 577-140^{\circ},[\alpha]^{24} 546-153^{\circ},[\alpha]^{24}{ }_{435}-309^{\circ},[\alpha]^{24} 405-408^{\circ}$ (c 0.4 , CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99$
(m, 3H), 5.80 (dd, $J=10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (ddd, $J=11.0,5.0,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{q}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58(\mathrm{dd}, J=14.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dt}, J=11.7,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.01(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.15-1.64(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{~s}$, 9 H), 0.76 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 177.6$, $169.8,137.0,134.4,132.1,129.4,128.5,128.2,81.9,81.6,76.4,64.2$, $41.0,38.7,33.6,31.2,27.3,25.6,20.6,10.7$; IR (film) 2966, 2936, 1735, 1729, 1479, 1373, 1264, 1159, $1023 \mathrm{~cm}^{-1}$; HRMS (EI) m / z $448.2370\left(448.2283\right.$ calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{~S}, \mathrm{M}\right), 279.1968(86 \%, 279.1959$ calcd for $\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{SO}_{2}$). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 66.93$; H , 8.09. Found: C, 66.67 ; H, 8.03 .

Also isolated from other chromatography fractions were the mixed acetal 34 (18% yield, a mixture of stereoisomers) and a 1.3:1 mixture of hydroxy acetates 35 and $\mathbf{3 6}$ (14% yield). Data for acetals 34: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) (major isomer) $\delta 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.90-$ $7.02(\mathrm{~m}, 3 \mathrm{H}), 6.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H})$, 3.05 and 3.04 ($\mathrm{S}, 3 \mathrm{H}$ total) $1.69(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 0.91$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$): (minor isomer) $\delta 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.90-7.02$ $(\mathrm{m}, 3 \mathrm{H}), 5.92(\mathrm{dt}, J=15.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H})$, 3.03 and 3.02 (s, 3 H total), 1.76 (d, $J=2.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.18 ($\mathrm{s}, 9 \mathrm{H}$), 0.82 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); IR (film) $3490,2964,2926,2874,1725$, 1474, 1239, $1163 \mathrm{~cm}^{-1}$. Data for 35/36: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) (major isomer) $\delta 7.15-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.98(\mathrm{~m}, 3 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H})$, $5.01(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}$); minor isomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.15-7.43$ (m, $2 \mathrm{H}), 6.89-6.98(\mathrm{~m}, 3 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 3.23$ $(\mathrm{m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; IR (film) 3461,2968 , 2874, 1735, 1608, 1371, $1238 \mathrm{~cm}^{-1}$; GC-MS (EI) showed similar fragmentation patterns for both isomers, $m / z 294(M), 276\left(M-\mathrm{H}_{2} \mathrm{O}\right)$, 234.

In a similar 1 g scale cyclization, ${ }^{\text {' }} \mathrm{H}$ NMR analysis of the crude product showed that oxocene 27 and tetrahydropyran $\mathbf{3 3}$ were formed in a ratio of $8.2: 1$. Purification on silica gel ($5: 1$ hexane-EtOAc) provided a pure sample of 33 : $[\alpha]^{24} \mathrm{D}-44.3^{\circ},[\alpha]^{24}{ }_{577}-49.8^{\circ},[\alpha]^{24}{ }_{546}$ $-57.6^{\circ},[\alpha]^{24} 435-109^{\circ},[\alpha]^{24} 405-135.0^{\circ}\left(c 0.57, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~m}, 3 \mathrm{H}), 4.91$ (s, $1 \mathrm{H}), 4.88(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{t}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.90(\mathrm{dd}, J=7.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dt}, J=14.3$ $3.2 \mathrm{~Hz}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 177.7,169.8,148.3,135.0,132.3,129.5,128.7$, $128.3,110.7,80.0,79.6,68.5,64.3,44.6,38.7,36.1,29.8,27.4,25.3$, $25.0,20.6,10.3$, IR (film) 2967, 2866, 1730, 1603, 1478, 1239, 1156 cm^{-1} : HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 449.2346$ (449.2361 calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{~S}, \mathrm{MH}$).
($2 R, 3 R, 8 R$)-3-Acetoxy-2-ethyl-8-[3-(pivaloyloxy)propyl]-3,4,7,8-tetrahydro- 2 H -oxocin (28). A suspension of Raney Ni (ca. 15 g) was activated by washing with water ($3 \times 100 \mathrm{~mL}$), $\mathrm{EtOH}(3 \times 100 \mathrm{~mL}$), and acetone ($3 \times 100 \mathrm{~mL}$), and then was overlayed with 130 mL of acetone. A solution of $27(710 \mathrm{mg}, 1.58 \mathrm{mmol})$ and 20 mL of acetone was added dropwise, and the resulting mixture was stirred at reflux for 6 h . After cooling to rt, Raney Ni was removed by filtration, the filtrate was concentrated, and the residue was purified by flash chromatography ($20: 1$ benzene-EtOAc) to afford oxocene 28 (461 mg , 85%): $[\alpha]^{24} \mathrm{D}-27.2^{\circ},[\alpha]^{24}{ }_{577}-30.2^{\circ},[\alpha]^{24} 546-35.4^{\circ},[\alpha]^{24}{ }_{435}-66.7^{\circ}$, $[\alpha]^{24}{ }_{405}-78.9^{\circ}\left(c 0.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.80$ (dt, $J=10.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{ddd}, J=11.2,5.0,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{ddd}, J=8.0,5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~m}$, $1 \mathrm{H}), 2.65(\mathrm{q}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dt}, J=14.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (dt. $J=11.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.80(\mathrm{~m}, 6 \mathrm{H})$, $1.14(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 178.4, 170.7, 130.6, 128.0, 82.1, 81.3, 76.1, 38.6, 34.9, 33.4, 29.1, 27.0, 25.6, 25.1, 21.0, 10.3; IR (film) 2985, 2935, 2875, 1735, 1729, 1480, 1458, 1373, 1284, 1240, 1159, $1022 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) m / z 341.2337 (341.2329 calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{5}, \mathrm{MH}$). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{5}: \mathrm{C}, 67.03 ; \mathrm{H}, 9.47$. Found: C, 67.10; H, 9.37.
($2 R, 3 R,, 8 R$)-(3-tert-Butyldimethylsiloxy)-2-ethyl-8-[3-(pivaloyloxy) propyl]-3,4,7,8-tetrahydro-2H-oxocin (29). A mixture of acetate $28(20.6 \mathrm{mg}, 0.061 \mathrm{mmol}), 0.5 \mathrm{~mL}$ of MeOH , and 2 M aqueous LiOH ($30 \mu \mathrm{~L}, 0.06 \mathrm{mmol}$) was stirred at rt for 3.5 h . After concentration, the residue was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$ and the combined organic layer was washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The resulting residue was purified by flash chromatog. raphy ($3: 1$ hexane-EtOAc) to afford the corresponding $\mathrm{C}(3)$ alcohol
$(14.5 \mathrm{mg}, 80 \%):[\alpha]^{20}{ }_{\mathrm{D}}-42.3^{\circ},[\alpha]^{20}{ }_{577}-46.4^{\circ},[\alpha]^{20}{ }_{546}-50.8^{\circ},[\alpha]^{20}{ }_{435}$ $-89^{\circ},[\alpha]^{20}{ }_{405}-106^{\circ}\left(c 0.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.75(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=9.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~m}$, $2 \mathrm{H}), 2.52(\mathrm{dt}, J=12.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.00(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 1.41-1.84(\mathrm{~m}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.5,129.3,129.0$, $81.9,79.9,73.7,64.2,38.6,33.7,33.3,32.5,27.1,25.8,25.6,10.5$; IR (film) 3442, 2961, 2936, 1728, 1480, 1458, 1285, 1160, 1129, 1070 cm^{-1}; HRMS (CI, isobutane) m/z 299.2231 (299.2221 calcd for $\left.\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{O}_{4}, \mathrm{MH}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4}: \mathrm{C}, 68.42 ; \mathrm{H}, 10.13$. Found: C, 68.35; H, 10.12 .

A solution of this alcohol ($272 \mathrm{mg}, 0.91 \mathrm{mmol}$), 2,6-lutidine (285 $\mathrm{mg}, 2.74 \mathrm{mmol}$), (TBDMS)OTf ($356 \mathrm{mg}, 1.37 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was maintained at $0^{\circ} \mathrm{C}$ for 1.5 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The resulting residue was purified by flash chromatography ($10: 1$ hexane- EtOAc) to afford 29 ($378 \mathrm{mg}, 100 \%$): $[\alpha]^{22} \mathrm{D}-17.3^{\circ},[\alpha]^{22}{ }_{577}-19.1^{\circ},[\alpha]^{22}{ }_{546}-25.2^{\circ},[\alpha]^{22}{ }_{435}-36.4^{\circ},[\alpha]^{22}{ }_{405}$ -42.8° (с $0.38, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.61-5.80$ $(\mathrm{m}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{ddd}, J=13.4,4.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (ddd, $J=8.4,4.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dt}, J=9.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{q}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{dt}, J=11.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00$ $(\mathrm{dd}, J=13.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.82(\mathrm{~m}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.6,129.8,129.1,83.5,81.5,75.7,64.4,38.7,35.0$, $33.6,33.4,27.2,26.1,25.8,25.7,18.3,10.9,-3.9,-4.7$; IR (film) 2959, 2931, 2857, 1731, 1463, 1284, 1157, 1077, $836 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $m / z 413.3103$ (413.3086 calcd for $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{Si}, \mathrm{MH}$). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}$: C, 66.94; H, 10.75. Found: C, 67.22; H, 10.69.
($2 R, 3 R, 8 R$)-3-(tert-Butyldimethylsiloxy)-2-ethyl-8-(3-hydroxypro-pyl)-3,4,7,8-tetrahydro-2H-oxocin (30). To a solution of 29 (65 mg , $0.157 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added DIBAL-H ($61 \mu \mathrm{~L}, 0.35$ mmol) dropwise at $-78^{\circ} \mathrm{C}$, and the resulting solution was maintained at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was then quenched by adding water $(0.2 \mathrm{~mL})$, the resulting mixture was allowed to warm to rt , and the precipitate was removed by filtration through Celite. Concentration of the filtrate gave essentially pure alcohol $30(47.6 \mathrm{mg}, 92 \%)$: $[\alpha]^{22}{ }_{D}$ $-17.9^{\circ},[\alpha]^{22}{ }_{577}-20.5^{\circ},[\alpha]^{22}{ }_{546}-23.3^{\circ},[\alpha]^{22}{ }_{435}-39.5^{\circ},[\alpha]^{22}{ }_{405}-46.3^{\circ}$ (c $0.59, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79(\mathrm{dt}, J=11.0,7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.67$ (dddd, $J=11.0,9.4,6.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 3 \mathrm{H})$, 3.42 (ddd, $J=8.6,4.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dt}, J=9.8,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.07(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{q}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H})$, $2.13(\mathrm{dt}, J=11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dd}, J=13.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-$ $1.73(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{~m}, 12 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 130.0,129.0,83.5,81.3,75.2,63.0,34.3,34.2,33.5$, 28.7, 25.9, 25.8, 18.1, 10.9, $-4.0,-4.9$; IR (film) 3421, 2958, 2931, $2857,1472,1463,1255,1074,1057,836 \mathrm{~cm}^{-1}$, HRMS (CI, isobutane) $m / z 329.2494$ (329.2511 calcd for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}, \mathrm{MH}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 65.80 ; \mathrm{H}, 11.04$. Found: $\mathrm{C}, 65.71 ; \mathrm{H}, 10.94$.
(2R,3R,8R)-3-(tert-Butyldimethylsiloxy)-2-ethyl-8-(3-0xo-1 (E) -propenyl)-3,4,7,8-tetrahydro-2H-oxocin (31). Following the general procedure of Swern, ${ }^{27}$ DMSO ($49 \mu \mathrm{~L}, 0.68 \mathrm{mmol}$) was added dropwise to a solution of $(\mathrm{COCl})_{2}(45 \mu \mathrm{~L}, 0.52 \mathrm{mmol})$ and 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. After 10 min , a solution of alcohol $30(170.8 \mathrm{mg}, 0.52 \mathrm{mmol})$ and 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at $-78^{\circ} \mathrm{C}$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , and $\mathrm{Et}_{3} \mathrm{~N}(0.23 \mathrm{~mL}, 1.70 \mathrm{mmol})$ was added. After 30 min , the cooling bath was removed and the reaction was warmed to rt . The reaction then was diluted with EtOAc (10 mL), washed with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated, and the resulting residue was purified by flash chromatography ($6: 1$ hexane-EtOAc) to afford the corresponding aldehyde $(156 \mathrm{mg}, 92 \%):[\alpha]^{24}{ }_{\mathrm{D}}-35.2^{\circ},[\alpha]^{24}{ }_{577}-38.0^{\circ},[\alpha]^{24}{ }_{546}-40.1^{\circ},[\alpha]^{24}{ }_{435}$ $-72.3^{\circ},[\alpha]^{24}{ }_{405}-79.1^{\circ}\left(c \quad 0.96, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 5.76(\mathrm{dt}, J=11.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{ddd}, J=11.0$, $4.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ (ddd, $J=11.0,5.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dt}, J=$ $9.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{q}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dq}, J=7.4,1.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{dt}, J=11.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}) .2 .00(\mathrm{dd}, J=13.9$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.89(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.8$, $129.5,129.3,83.3,80.3,75.3,40.8,35.2,33.4,29.6,26.0,25.6,18.3$,

[^7]$10.9,-3.9,-4.8$; IR (film) $3020,2959,2931,2909,2857,1727,1472$, 1463, 1254, 1074, $836 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 327.2352$ (327.2355 calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}, \mathrm{MH}$).

To a solution of this aldehyde ($236 \mathrm{mg}, 0.72 \mathrm{mmol}$), $i \cdot \operatorname{Pr}_{2} \operatorname{EtN}(0.5$ $\mathrm{mL}, 2.90 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added TMSOTf $(0.5 \mathrm{M}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.9 \mathrm{~mL}$) dropwise at $-10^{\circ} \mathrm{C}$ (ice-salt bath). The reaction was stirred at $-10^{\circ} \mathrm{C}$ for 1 h and at rt for 3 h and then diluted with hexane (20 mL), washed with cold saturated aqueous NaHCO_{3} (30 mL), dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and concentrated. Following the general procedure of Saegusa, ${ }^{20}$ this mixture of enoxysilanes ($E: Z \approx 1: 1$) was oxidized at rt in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ by adding $\mathrm{Na}_{2} \mathrm{CO}_{3}(150 \mathrm{mg}, 1.4$ $\mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(160 \mathrm{mg}, 0.72 \mathrm{mmol})$. After 4 h , the resulting black precipitate was removed by filtration through Celite. The filtrate was then diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$, washed with saturated aqueous NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give essentially pure enal $31(229 \mathrm{mg}, 98 \%):[\alpha]^{24}{ }_{\mathrm{D}}+19.3^{\circ},[\alpha]^{24}{ }_{577}+18.5^{\circ},[\alpha]^{24}{ }_{546}$ $+21.0^{\circ},[\alpha]^{24}{ }_{435}+44.0^{\circ},[\alpha]^{24}{ }_{405}+54.4^{\circ}\left(c 1.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{dd}, J=15.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{ddd}, J=15.6,8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.77 (m, 2H), 3.99 (dd, $J=10.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (ddd, $J=10.8$, $4.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dt}, J=9.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{q}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.29$ (dddd, $J=14.7$, $14.1,7.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.7,157.7,131.0$, $130.4,128.3,84.5,80.7,75.8,34.2,33.6,25.9,25.8,18.2,10.7,-4.1$, -4.8; IR (film) $3017,2970,2966,1687,1251,1226,1208,1056 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $m / z 325.2189$ (325.2198 calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}$, MH).
($2 R, 3 R, 8 R$)-3-(tert-Butyldimethylsiloxy)-2-ethyl-8-(3-hydroxy-$1(E)$-propenyl)-3,4,7,8-tetrahydro- $2 H$-oxocin (32). To a solution of enal $31(18.8 \mathrm{mg}, 0.058 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added DIBAL-H (0.25 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.25 \mathrm{~mL}$) dropwise at $-78^{\circ} \mathrm{C}$. The reaction was maintained at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h and then quenched by adding water $(0.2 \mathrm{~mL})$. The resulting mixture was warmed to rt , and the precipitate was removed by filtration through Celite. The filtrate was then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give essentially pure 32 $(16.3 \mathrm{mg}, 86 \%):[\alpha]^{24}{ }_{\mathrm{D}}-6.3^{\circ},[\alpha]^{24}{ }_{577}-7.1^{\circ},[\alpha]^{24}{ }_{546}-8.7^{\circ},[\alpha]^{24}{ }_{435}$ $-12.7^{\circ},[\alpha]^{24}{ }_{405}-15.2^{\circ}\left(c 0.85, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 5.68-5.90(\mathrm{~m}, 4 \mathrm{H}), 4.15(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.76(\mathrm{~m}, 2 \mathrm{H})$, $3.41(\mathrm{dt}, J=9.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{q}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~m}$, $1 \mathrm{H}), 2.05-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.28($ dddd, $J=14.8$, $10.2,7.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.87-1.24(\mathrm{t}$ and $\mathrm{s}, 12 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05$ $(\mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.4,129.5,129.4,128.9,84.0$, $81.9,76.0,63.3,35.0,33.6,26.0,18.3,11.0,-4.1,-4.7$; IR (film) 3462, 3019, 2964, 2932, 1522, 1424, 1226, 1220, $1055 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $m / z 327.2362$ (327.2355 caled for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}, \mathrm{MH}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$: C, 66.20; H, 10.49. Found: C, 65.98; H, 10.48 .
(2R,3R,8R)-3-(tert-Butyldimethylsiloxy)-2-ethyl-8-(3-hydroxy-1,2-epoxypropyl)-3,4,7,8-tetrahydro-2H-oxocin (40). A solution of allyl alcohol 32 ($98 \mathrm{mg}, 0.30 \mathrm{mmol}$), (+)-diethyl tartrate $\left(2.0 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution, 0.22 mL), and 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-25^{\circ} \mathrm{C}, \mathrm{Ti}-$ $\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}\left(2.0 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution, 0.22 mL$)$ was added, and the resulting solution was maintained at $-25^{\circ} \mathrm{C}$ for $30 \mathrm{~min} .{ }^{21}$ tert-Butylhydroperoxide (4.3 M toluene solution, 0.14 mL) was added, and the resulting solution was maintained at $-25^{\circ} \mathrm{C}$ for 7.5 h and quenched by adding triethanolamine ($1.0 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, 0.78 mL). The resulting mixture was warmed to $0^{\circ} \mathrm{C}$, stirred for 1 h , and then concentrated. This residue was purified by flash chromatography ($3: 1$ hexane-EtOAc) to give epoxide $40(88 \mathrm{mg}, 86 \%)$ as a single stereoisomer: $[\alpha]^{24} \mathrm{D}$ $-14.5^{\circ},[\alpha]^{24}{ }_{577}-20.2^{\circ},[\alpha]^{24}{ }_{546}-23.6^{\circ},[\alpha]^{24}{ }_{435}-35.3^{\circ},[\alpha]^{24}{ }_{405}-38.2^{\circ}$ (c $1.02, \mathrm{CHCl}_{3}$) ; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.73(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~d}$, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, J=11.0,5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dt}, J=9.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.11$ $(\mathrm{m}, 1 \mathrm{H}), 2.71(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{dt}, J=11.6$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=13.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}) .1 .81(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 1.61-$ $1.69(\mathrm{~m}, 1 \mathrm{H}), 1.29$ (dddd, $J=14.8,11.7,6.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 129.7,128.5,84.6,82.2,76.1,61.4,58.1,55.8,33.6$, $30.9,26.0,18.3,10.8,-4.1,-4.7$; IR (film) 3462, 3023, 3018, 2976, $2931,1521,1424,1226,1207,1048,929 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 343.2253$ (343.2304 calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}$, MH).
($2 R, 3 R, 8 R$)-3-(tert-Butyldimethylsiloxy)-2-ethyl-8-(3-oxo-1,2-ep-oxypropyl)-3,4,7,8-tetrahydro-2H-oxocin (41). The Dess-Martin periodinane ${ }^{22}$ ($48 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added to a stirring solution of epoxy alcohol $40(19 \mathrm{mg}, 0.057 \mathrm{mmol})$ and 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, washed with 50% aqueous $\mathrm{NaHSO}_{3}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration provided essentially pure aldehyde $41(17 \mathrm{mg}, 88 \%):[\alpha]^{24} \mathrm{D}+15.3^{\circ},[\alpha]^{24}{ }_{577}+12.4^{\circ},[\alpha]^{24}{ }_{546}+16.2^{\circ}$, $\left.[\alpha]^{24}{ }_{435}+44.4^{\circ},[\alpha]^{24}{ }_{405}+66.3^{\circ}(c) 0.65, \mathrm{CHCl}_{3}\right)$) ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.02(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.75(\mathrm{~m}, 2 \mathrm{H}), 3.70$ (ddd, J $=10.9,5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=5.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.37$ $(\mathrm{m}, 2 \mathrm{H}), 3.23(\mathrm{dd}, J=10.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.00-$ $2.17(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.8,130.1,127.9,84.9,81.0,75.8,58.7,56.6,33.5,30.8$, $26.0,25.9,18.2,10.8,-4.1,-4.8$; IR (film) 2956, 2930, 2857, 1729, $1463,1255,1081 \mathrm{~cm}{ }^{1}$; HRMS (CI, NH_{3}) m/z 358.2418 (358.2413 calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{Si}, \mathrm{M}+\mathrm{NH}_{4}$), 341.2152 (341.2142 calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{4}$ Si, MH). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 63.48 ; \mathrm{H}, 9.47$. Found: C, 62.91 ; H, 9.55.
($2 R, 3 R, 8 R$)-3-(tert-Butyldimethylsiloxy)-8-[1,2-epoxy-6-(triisopro-pylsilyl)-3-hexen-5-ynyl]-2-ethyl-3,4,7,8-tetrahydro-2H-oxocin (43). To a stirring suspension of phosphonium salt $\mathbf{4 2}^{23}$ ($225 \mathrm{mg}, 0.42 \mathrm{mmol}$) and 4 mL of THF was added $n \cdot \operatorname{BuLi}(1.96 \mathrm{M}, 0.19 \mathrm{~mL})$ dropwise at $-50^{\circ} \mathrm{C}$. The resulting pale yellow mixture was maintained at -50 ${ }^{\circ} \mathrm{C}$ for 30 min and then cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of $41(95 \mathrm{mg}$, 0.28 mmol) in 1 mL of THF was then added dropwise. The resulting solution was maintained at $0^{\circ} \mathrm{C}$ for 2 h and then diluted with hexane $(10 \mathrm{~mL})$, washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by flash chromatography ($40: 1$ hexaneEtOAc) to afford 43 ($129 \mathrm{mg}, 89 \%$) as a $3: 1$ mixture of (E)- and (Z)-enyne stereoisomers: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.85-5.93$ $(\mathrm{m}, 2 \mathrm{H}), 5.69-5.77(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.16(\mathrm{~m}, 2 \mathrm{H})$, $2.70(\mathrm{q}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{dt}, J=11.7,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.01(\mathrm{dd}, J=13.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.06$ $(\mathrm{m}, 21 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}$, $3 \mathrm{H})$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3014,2960,2865,1463,1228$ and $1077 \mathrm{~cm}^{-1}$; HRMS (CI, NH_{3}) m/z 519.3694 (519.3611 calcd for $\mathrm{C}_{30} \mathrm{H}_{55} \mathrm{O}_{3} \mathrm{Si}_{2}, \mathrm{MH}$).
($2 R, 3 R, 8 R$)-3-(tert-Butyldimethylsiloxy)-2-ethyl-8-[1(R)-hydroxy-6-(triisopropylsilyl)-3-hexen-5-ynyl]-3,4,7,8-tetrahydro-2 H -oxocin (44). Following the general procedure of Tsuji, ${ }^{24 a}$ a solution of $\mathrm{Et}_{3} \mathrm{NH}^{+} \mathrm{HCO}_{2}{ }^{-}$ (0.5 M in dioxane, $1.2 \mathrm{~mL}, 0.62 \mathrm{mmol}$) was added dropwise to a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}(7.2 \mathrm{mg}, 0.0063 \mathrm{mmol}), n-\mathrm{Bu}_{3} \mathrm{P}(0.05 \mathrm{M}$ in dioxane, $0.12 \mathrm{~mL}, 0.0063 \mathrm{mmol}$), and dioxane (3 mL). After 5 min , a solution of 43 ($E: Z=3: 1 ; 65 \mathrm{mg}, 0.12 \mathrm{mmol})$ and 2 mL of dioxane was added at rt . The resulting solution was maintained at rt for 4 h and concentrated, and the residue was purified by flash chromatography ($30: 1$ hexane-EtOEt) to afford 44 ($61 \mathrm{mg}, 94 \% ; E: Z=4.8: 1.0$). Subsequent flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ provided $36.4 \mathrm{mg}(56 \%)$ of the pure (E)-enyne 44 , along with a mixture of (E) - and (Z)-enynes ($22 \mathrm{mg}, 34 \%$): Data for $(E)-44$: $[\alpha]^{24} \mathrm{D}-21.9^{\circ},[\alpha]^{24}{ }_{577}-38.4^{\circ},[\alpha]^{24}{ }_{s 46}$ $-31.6^{\circ},[\alpha]^{24}{ }_{435}-49.7^{\circ},[\alpha]^{24}{ }_{405}-62.1^{\circ}\left(c 0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.28(\mathrm{dt}, J=15.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.82(\mathrm{~m}, 2 \mathrm{H})$, $5.61(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (ddd, $J=10.8,5.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ $(\mathrm{m}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=9.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{q}, J=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.29$ (ddd, $J=14.7,7.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14(\mathrm{dt}, J=11.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dd}, J=13.4,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.53(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~m}, 21 \mathrm{H}), 0.86-0.91(\mathrm{t}$ and $\mathrm{s}, 12 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$, $0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.5,129.4,129.1,112.2$, 105.6, 89.4, 83.6, 83.4, 74.9. 73.3, 37.4, 33.4, 31.2, 25.9, 25.6, 18.6, 18.2, 11.3, 10.7, $-3.8,-4.8$; IR (film) 3550, 2942, 2863, 1462, 1255, $1077 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 521.3836$ (521.3845 calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{57} \mathrm{O}_{3} \mathrm{Si}_{2}, \mathrm{MH}\right)$.
($2 R, 3 R, 8 R$)-8-[1(R)-Acetoxy-6-(triisopropylisily)-3-hexen- 5 -ynyl]-2-ethyl-3-hydroxy-3,4,7,8-tetrahydro-2H-oxocin (45). A solution of the (E)-enyne 44 ($63 \mathrm{mg}, 0.12 \mathrm{mmol}$, pure E stereoisomer), pyridine $(0.2 \mathrm{~mL}, 2.4 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(0.11 \mathrm{~mL}, 1.2 \mathrm{mmol})$, DMAP (1.5 mg), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was maintained at $0^{\circ} \mathrm{C}$ for 1.5 h and then at rt for 5 h . The reaction then was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with dilute HCl , saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and brine (5 mL)
and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration provided the corresponding acetate $(65 \mathrm{mg}):[\alpha]^{24} \mathrm{D}-21.1^{\circ},[\alpha]^{24} 577-16.5^{\circ},[\alpha]^{24}{ }_{546}-25.1^{\circ},[\alpha]^{24}{ }_{435}$ $-43.0^{\circ},[\alpha]^{24}{ }_{405}-55.6^{\circ}$ (c $0.32, \mathrm{CHCl}_{3}$); 'H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.12(\mathrm{dt}, J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.75(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dt}, J=8.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~m}$, 2 H), 2.57-2.68 (m, 2H), 2.35-2.43 (m, 2H), 1.97-2.13 (m, 2H), 2.06 $(\mathrm{s}, 3 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~m}, 21 \mathrm{H}), 0.89-0.93(\mathrm{t}$ and $\mathrm{s}, 12 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4$, $140.6,129.6,129.0,112.6,105.5,89.6,84.5,80.8,75.4,74.6,33.4$, $33.3,29.5,25.9,25.6,21.0,18.6,18.2,11.3,10.8,-3.9,-4.6$, IR (CHCl_{3}) 2945, 2865, $1734 \mathrm{~cm}^{-1}$; HRMS (FAB) $\mathrm{m} / \mathrm{z} 563.3942$ (563.3950 calcd for $\mathrm{C}_{32} \mathrm{H}_{59} \mathrm{O}_{4} \mathrm{Si}_{2}$, MH).

A solution of this material ($65 \mathrm{mg}, 0.12 \mathrm{mmol}$) and 7 mL of 80% aqueous HOAc was maintained for 18 h at rt and then concentrated under high vacuum. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ mL), and the extracts were washed with saturated aqueous NaHCO_{3} (5 mL), water (5 mL), and brine (5 mL). After drying $\left(\mathrm{MgSO}_{4}\right)$ and concentration, the residue was purified by flash chromatography ($2: 1$ hexane-EtOAc) to afford $\mathbf{4 5}(41 \mathrm{mg}, 76 \%$ from 44$)$: $[\alpha]^{24}{ }_{\mathrm{D}}-27.1^{\circ}$, $[\alpha]^{24}{ }_{577}-29.6^{\circ},[\alpha]^{24} 545-33.5^{\circ},[\alpha]^{24}{ }_{435}-61.8^{\circ},[\alpha]^{24}{ }_{405}-78.7^{\circ}$ (c 0.75 , CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 6.08(\mathrm{dt}, J=16.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.75 $(\mathrm{m}, 2 \mathrm{H}), 5.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dt}, J=8.0,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.67(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.54(\mathrm{~m}, 5 \mathrm{H}), 2.09-2.17(\mathrm{~m}$, $1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~m}, 21 \mathrm{H}), 0.92$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,139.8,129.5$, $128.9,113.0,105.2,90.1,83.1,80.5,74.4,73.6,34.2,33.5,29.8,25.5$, $21.0,18.6,11.3,10.4 ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3529,2944,2866,1735 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 449.3110$ (449.3086 calcd for $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{Si}_{2}$, MH).
$(+)$-Laurencin (1). Following the general procedure described by Holmes, ${ }^{7}$ bromine ($11 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) was added dropwise to a solution of $1,2-$ bis(diphenylphosphino)ethane ($48 \mathrm{mg}, 0.12 \mathrm{mmol}$) and 6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-10{ }^{\circ} \mathrm{C}$ (ice-salt bath). The resulting colorless solution was maintained at $-10{ }^{\circ} \mathrm{C}$ for 5 min , and a solution of $45(36 \mathrm{mg}$, 0.080 mmol) and 3 mL of toluene was added. The reaction was then heated at $70{ }^{\circ} \mathrm{C}$ for 2 h . After cooling to rt , the reaction was concentrated, ether (5 mL) was added, and the resulting precipitate was removed by filtration. The filtrate was washed with water (5 mL) and brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The resulting residue was purified by flash chromatography ($40: 1$ hexane-EtOAc) to give the triisopropylsilyl derivative of $(+)$-laurencin ($16 \mathrm{mg}, 39 \%$): $[\alpha]^{24} \mathrm{D}$ $+40.3^{\circ},[\alpha]^{24}{ }_{577}+23.7^{\circ},[\alpha]^{24}{ }_{546}+33.2^{\circ},[\alpha]^{24}{ }_{435}+63.1^{\circ},[\alpha]^{24}{ }_{405}+75.3^{\circ}$ (c $0.15, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.08$ (dt, $J=16.0,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.93(\mathrm{~m}, 2 \mathrm{H}), 5.58(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dt}, J=8.5$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dt}, J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{ddd}$, $J=14.1,8.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~m}$, $2 \mathrm{H}), 1.06(\mathrm{~m}, 21 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.3,139.7,129.3,128.9,113.0,105.2,84.6,81.4,74.2$, $56.0,33.8,32.3,29.6,25.7,21.0,18.6,11.3,9.3$; IR $\left(\mathrm{CHCl}_{3}\right) 3000$, $2866,1735,1522 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 511.2229$ (511.2243 calcd for $\left.\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{BrO}_{3} \mathrm{Si}, \mathrm{MH}\right)$.

A solution of this material ($16 \mathrm{mg}, 0.03 \mathrm{mmol}$), TBAF (1 M in THF, $63 \mu \mathrm{~L}$), and THF (1 mL) was maintained at $-10^{\circ} \mathrm{C}$ (ice-salt bath) for 30 min and then diluted with ether (5 mL). The resulting solution was washed with brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and purified by flash chromatography ($15: 1$ hexane-EtOAc) to afford (+)laurencin ($7.0 \mathrm{mg}, 63 \%$): $[\alpha]^{24} \mathrm{D}=+68.2^{\circ}\left(c 0.35, \mathrm{CHCl}_{3}\right)$.

Acknowledgment. Support of this investigation by NSF Grant CHE-9412266, the Alexander von Humboldt Foundation (Feodor Lynen Postdoctoral Fellowship to M.B.), Merck \& Co. (ADP Postdoctoral Fellowship to W.H.B.), and the Green Cross Corp. is gratefully acknowledged. We particularly thank Mr. Wei Deng for ${ }^{1} \mathrm{H}$ NMR NOE experiments, Dr. Chi Li for exploratory experiments in this area, and Professors Akiro Murai and Andrew Holmes for providing experimental details for the conversion of the trimethylsilyl analog of $\mathbf{4 5 \rightarrow 1}$ and for copies of spectra of synthetic and natural laurencin.

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, May 15, 1995.
 (1) Current addresses: (a) Agricultural Research Station, BASF, D-67117 Limburgerhof, D6700 Ludwigshafen, Germany. (b) Bayer Pharmaceuticals, 400 Morgan Lane, West Haven, CT. (c) Medicinal Chemistry Research Division, The Green Cross Corp., 2-25-1 Shodai-Ohtani, Hirakata, Osaka 573, Japan.
 (2) (a) Moore, R. E. In Marine Natural Products; Scheuer, P. J., Ed.; Academic: New York, 1978; Vol. 1, pp 43-121. (b) Erickson, K. L. In Marine Natural Products; Scheuer, P. J., Ed.; Academic: New York, 1983; Vol. 5, pp 131-257. (c) Faulkner, D. J. Nat. Prod. Rep. 1994, II, 355 and earlier reviews in this series.
 (3) (a) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 1091. (b) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron 1968, 24, 4193.
 (4) (a) Cameron, A. F.; Cheung, K. K.; Ferguson, G.; Monteath Robertson, J. J. Chem. Soc., Chem. Commun. 1965, 638. (b) Cameron, A. F.: Cheung, K. K.; Ferguson, G.; Monteath Robertson, J. J. Chem. Soc. B 1969, 559.
 (5) (a) Murai, A., Murase, H.; Matsue, H.; Masamune, T. Tetrahedron Lett. 1977, 2507. (b) Masamune, T.; Matsue, H.; Murase, H. Bull. Chem. Soc. Jpn. 1979, 52, 127. (c) Masamune, T.; Murase, H.; Matsue, H.; Murai, A. Bull. Chem. Soc. Jpn. 1979, 52, 135.

[^1]: (6) Tsushima, K.; Murai, A. Tetrahedron Lett. 1992, 33, 4345.
 (7) Robinson, R. A.; Clark, J. S.; Holmes, A. B. J. Am. Chem. Soc. 1993, 115, 10400.
 (8) For a recent review, see: Roxburgh, C. J. Tetrahedron 1993, 49, 10749.

[^2]: (9) (a) Overman, L. E.; Blumenkopf, T. A.; Castañeda, A.; Thompson. A. S. J. Am. Chem. Soc. 1986, 108, 3516. (b) Blumenkopf, T. A.; Bratz, M.; Castañeda, A.; Look, G. C.; Overman, L. E.; Rodriguez, D.; Thompson, A. S. J. Am. Chem. Soc. 1990, 112, 4386. (c) Blumenkopf, T. A.; Look, G. C.; Overman, L. E. J. Am. Chem. Soc. 1990, 112, 4399. (d) Overman, L. E. Acc. Chem. Res. 1992, 25, 352.
 (10) Overman, L. E.; Thompson, A. S. J. Am. Chem. Soc. 1988, 110, 2248.
 (11) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1988, $110,1535$.
 (12) The standard abbreviations employed in this account are summarized in J. Org. Chem. 1994, 59, 7A.
 (13) Lipshutz, B. H.; Pegram, J. J.; Morey, M. C. Tetrahedron Lett. 1981, 22, 4603.

[^3]: (14) (a) Ishiyama, T.; Miyaura, N; Suzuki, A. Org. Synth. 1992, 71, 89. (b) Ishiyama, T.; Miyaura, N; Suzuki, A. Tetrahedron Lett. 1988, 29, 3983. (15) Paquette, L. A.; Carr, V. C. Organic Syntheses; Wiley: New York, 1990; Collect. Vol. VII, p 453.
 (16) Brown, H. C.; Racherla, U. S. Tetrahedron Lett. 1985, 26, 2187.
 (17) Pine, S. H.; Kim, G; Lee, V. Org. Synth. 1990, 69, 72.

[^4]: (18) (a) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179. (b) Burgess, K.; van der Donk, W. A.; Weskott, S. A.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. J. Am. Chem. Soc. 1992, 114, 9350. (c) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1988, 110, 6917.

[^5]: (21) Rossiter, B. E. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1985; Vol. 5, Chapter 7.
 (22) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4156. (b) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.

[^6]: (23) Corey, E. J.; Ruden, R. A. Tetrahedron Lett. 1973, 1495.
 (24) (a) Oshima, M; Yamazaki, H.; Shimizu, I; Nisar, M.; Tsuji, J. J. Am. Chem. Soc. 1989, 111, 6280. (b) Shimizu, I; Hayashi, K.; Ide, N.; Oshima, M. Tetrahedron 1991, 47, 2991.
 (25) Although not pursued, conversion of the Z stereoisomer of 44 to the (E)-enyne should be possible: Ishihara, J.; Kanoh, N.; Fukuzawa, A.; Murai, A. Chem. Lett. 1994, 1563.
 (26) Deng. W.; Overman, L. E. J. Am. Chem. Soc. 1994, 116, 11241.

[^7]: (27) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480.

